Projecting Financial Statements

THE BALANCE SHEET

INVESTMENT PROPERTY

Projecting the Balance Sheet Investment Property
 Alstria Model B/S - Projecting Investment Property

- The most important asset for a REIT is its Investment Property (IP) portfolio. IP:
a) rises with additions from acquisitions,
b) rises with CAPEX (capital expenditures),
c) and declines with reductions from asset sales
- Alstria uses "fair value accounting." That means IP assets are periodically revalued by an external appraisal and that value is used on the Balance Sheet.
- The other method (not used) is "historical cost accounting." Under this method assets are held at historical cost and written down by D\&A.
- So, since Alstria uses fair value accounting for IP: IP is not affected by D\&A.
- Some development activity for Alstria is not reflected in IP. Specifically, investments \& contributions in Alstria's 49\%-owned JVs increase the JV balance, not IP. More on this shortly.
- Strictly for IP, CAPEX has two effects: 1) the B/S effect is reflected in growth of the IP portfolio, 2) the P\&L effect is reflected in an increase in the organic rental growth rate.
- Development activity may be more significant for other companies \& require greater modeling detail.

Projecting the Balance Sheet Investment Property

Alstria Model B/S - Projecting Investment Property

Projecting the Balance Sheet Investment Property (cont'd)

Alstria Model B/S - Projecting Investment Property

- To model the growth (or decline) of the 2011E IP balance, we:
a. Link the IP Calculation to the Net Acquisitions calculated previously
b. Project CAPEX. Note: Searching the annual report for "CAPEX" reveals that "in the next two years, the company plans to invest between $€ 40$ and $€ 50 \mathrm{~m}$ in the portfolio" (Group Management Report, Pg. 10)
Link IP Calc'n to Net Acquisitions and Project CAPEX

Projecting the Balance Sheet Investment Property (cont'd)

Alstria Model B/S - Projecting Investment Property

- We then link the Ending Balances back up to the Model Balance Sheet and copy over formulas to 2012E

Modeling Growth in IP \& Linking Back to Balance Sheet

Projecting the Balance Sheet Investment Property (cont'd)

Alstria Model B/S - Projecting Investment Property

- IP as a function of Net Acquisitions (calculated previously) and CAPEX

Modeling Investment Property

EQUITY INVESTMENTS (JVS)

Projecting the Balance Sheet Equity Investments (JVs)

Alstria Model B/S - Projecting Equity Investments

- Equity Investments is the line item reflecting Alstria's two 49\%-owned JVs.
- Remember from modeling out JV Income, only one line item is reported - the Net Income at the JV level (or JV FFO when adjusted for cash-recurring effects).
- Line items from Rental Income down through FFO are not reported separately, but only the JV FFO. And that's the line-item that appears.
- We had to build a model-in-a-model, projecting each of the intermediary line-items to ultimately derive JV FFO.
- The Balance Sheet process for Equity Investments is similar.
- JVs in reality have numerous assets and liabilities.
- Note here that Assets - Liabilities = Equity
- ...and Equity is the only item that is reported for the JVs.
- Instead of showing each asset and liability account at the JV level separately, the entire Balance Sheet at the JV-level is rolled up into a single line item on Alstria's consolidated B/S - namely Equity Investments.
- Theoretically, modeling Equity Investments would thus require laboriously projecting all JV assets \& liabilities individually. However...to facilitate modeling, we make a simplifying assumption: JV assets \& liabilities stay flat.

Projecting the Balance Sheet Equity Investments (JVs) - cont'd

Alstria Model B/S - Projecting Equity Investments

- Note that the flat asset and liability assumption is a significant leap of faith which should be verified with management.
- There could be a material effect on our FFO projections, for example if JV Debt changes throughout the development process, which in turn would change JV Interest Expense and FFO.
- Technically, the flat-asset assumption is also incorrect even if Alstria doesn't contribute any further equity or CAPEX.
- From an accounting perspective, the value of the building in the JV would be expected to increase throughout the development process - e.g. when an appraiser revalues the building as development progress is made.
- However, there would be no cash-impact from these valuation increases and therefore no cash impact on our P\&L projections. As such we ignore possible valuation changes at the JV level.
- For our purposes Equity Investments will only increase with positive JV FFO as cash income is generated at the JV level and decrease with negative JV FFO as cash losses are generated at the JV level.

Projecting the Balance Sheet Equity Investments (cont'd)

Alstria Model B/S - Projecting Equity Investments

- We calculate the growth (or decline) of Equity Investments as a function of last year's Equity Investments balance +/- the JV FFO calculated in the JV Investments and Income section

Link IP Calc'n to Net Acquisitions and Project CAPEX

PROPERTY, PLANT \& EQUIPMENT

Projecting the Balance Sheet Property, Plant \& Equipment
 Alstria Model B/S - Projecting PP\&E

- PP\&E (Property, Plant and Equipment) consists of the assets used by the company in its day-to-day operations
- Unlike Investment Property which is continually revalued and held at "fairvalue" PP\&E is subject to D\&A - a theoretical, non-cash write-down of the assets.
- PP\&E is not held at fair value and revalued by an appraiser. Rather, PP\&E is recorded in the financial statements at historical cost and written down each period by a pre-calculated amount of D\&A (see annual report pg. 45).
- For Alstria PP\&E and D\&A are relatively minor items but for other companies (especially for asset-heavy businesses) PP\&E and D\&A may be more relevant.
- PP\&E a) grows with PP\&E Additions, and b) declines with D\&A
- Technically some other items (not just PP\&E) are affected by D\&A. These include Intangibles and certain other balance sheet assets held at historical cost. However, for simplicity we assume the entire amount of D\&A reduces only the PP\&E balance.

Projecting the Balance Sheet Property, Plant \& Equipment (cont'd)

Alstria Model B/S - Projecting PP\&E

- We set up a schedule to calculate PP\&E based on PP\&E Additions and D\&A

Set up PP\&E Model Section and Link to PP\&E to Model B/S

Projecting the Balance Sheet Property, Plant \& Equipment (cont'd)
 Alstria Model B/S - Projecting PP\&E

- PP\&E Additions will be driven off the 2010A percentage of CAPEX, which we assume stays constant
- D\&A will consist of:
a) D\&A related to the existing portfolio b) new D\&A from future-year PP\&E Additions
- We need to estimate the Depreciation Period needed to calculate D\&A on future-year PP\&E Additions
- We use the average gross balance of PP\&E reported in Note 10.3 (before subtraction of accumulated depreciation) and reported D\&A related to those gross PP\&E balances to back into this Depreciation Period

Projecting the Balance Sheet Property, Plant \& Equipment (cont'd)
 Alstria Model B/S - Projecting PP\&E

- Input PP\&E Additions and CAPEX from annual report and calculate Depreciation Period

Calculate PP\&E and D\&A Drivers from Annual Report Annual Report Note 10.3

Cliphoard Γ_{1}		Alignment	10.3 Property, plant and equipment	
C01 * $f_{x}=$				
(1) Input 2010A PP\&E - Additions \& CAPEX from annual report: $\begin{gathered} \mathrm{C} 88=2,245-25=2,219(\text { Note } 10.3) \\ \mathrm{C} 89=16,000(\text { pg. 10 }) \end{gathered}$ (2) Calculate \% PP\&E Additions of CAPEX: $\begin{gathered} 2,219 / 16,000=13.9 \% \\ \Leftrightarrow \\ \mathrm{C} 90=\mathrm{C} 88 / \mathrm{C} 89 \end{gathered}$				$\begin{aligned} & \text { Total } \\ & 2010 \end{aligned}$
			EUR k	
			Acquisition and production cost	
			As at Jan. 1, 2010	6,957
			Additions	2,244
			Disposals	
			As at Dec. 31, 2010 9,176	
87 -			Accumulated amortisation, depreciation and write-downs	
80 PP\&E Additions	Calculate Depreciation	$\left(\begin{array}{c}2,229 \\ 16,000\end{array}\right.$	As at Jan. 1, 2010	1,060
89 CAPCX			Additions	308
90% PP\&EAdditions of CAPEX		13,9\%	Disposals	-18
91 Depreciation Deriod / wr)			As at Dec. 31, 2010	1,350
9 So -		20.1	Net book values as at Dec. 31, 2010	7,826

Projecting the Balance Sheet Property, Plant \& Equipment (cont'd)

Alstria Model B/S - Projecting PP\&E

- We now use the 2010A PP\&E-drivers calculated from annual report disclosure to project future PP\&E Additions
- Note: In the case of Alstria D\&A and PP\&E are not major drivers of the earnings profile. However for other companies - in particular those with asset-intensive business models not using fair value accounting - D\&A may require greater modeling attention. As such, simplifying assumptions such as keeping flat the \% PP\&E Additions of CAPEX and Depreciation Period at historical levels should be double-checked and adjusted as necessary

Use 2010A PP\&E-Drivers to Project PP\&E Additions

Projecting the Balance Sheet Property, Plant \& Equipment (cont'd)

Alstria Model B/S - Projecting PP\&E

- Future year D\&A will consist of:
a) the 2010A reported D\&A of $€ 570 \mathrm{k}$, from existing PP\&E (which stays constant due to "straight lining"), plus
b) new D\&A related to future-year PP\&E Additions which we calculate using the previously estimated

Depreciation Period

- Note: We can \$-lock rows by pressing F4 twice while scrolling within a formula. This allows copying down of a formula, keeping only the row references locked while moving column references over.

Set up D\&A Model Section

Calculate Future Year D\&A

Projecting the Balance Sheet Property, Plant \& Equipment (cont'd)
 Alstria Model B/S - Projecting PP\&E

- We now link-up and copy across formulas for D\&A in each year and sum Total D\&A

Link Up and Copy Across D\&A for Each Year

Projecting the Balance Sheet Property, Plant \& Equipment (cont'd)
 Alstria Model B/S - Projecting PP\&E

- PP\&E can now be calculated using PP\&E Additions and D\&A

Calculate PP\&E from PP\&E Additions and

	$86-f_{x}=$		=SUM(D83:D85)			
4	A		B	C		D
82	PP\&E 2011E					
83	PP\&E - Beginning Balance PP\&E Additions D\&A PP\&E - Ending Balance	(1) Link 2011E PP\&E Additions on PP\&Eschedule to PP\&E Additions below:D84 = D88				7,826
84						3,120
85						(689)
86		(2) Link 2011E D\&A on PP\&E-schedule to				10,257
87		2011E Total D\&A below:D85 = D96				
88	PP\&E Additions					3,120
89		(3) Calculate 2011E PP\&E - Ending Balance:				22,500
90		$7,826+3,120+(689)=10,257$				13.9\%
91	\% PP\&E Additions of CAPE Depreciation Period (yrs)					26.2
92						
93	D\&A from existing PP\&E	D86 = SUM (D83:D85)				(570)
94	D\&A from 2011E PP\&E Additions			NM		(119)
95	D\&A from 2012E PP\&E Additions			$N M$		NM
96	Total D\&A			(570)		(689)

Projecting the Balance Sheet Property, Plant \& Equipment (cont'd)

Alstria Model B/S - Projecting PP\&E

- PP\&E can now be linked back up to the Model B/S

Link PP\&E Back up to Model B/S

Projecting the Balance Sheet Property, Plant \& Equipment (cont'd)

Alstria Model B/S - Projecting PP\&E

- PP\&E as a function of D\&A and PP\&E Additions

Property, Plant \& Equipment

26	Alstria Model Balance Sheet	2010A	2011E	2012E
27	Investment Property	1,349,000	1,421,500	1,494,000
28	Equity Investments (JVs)	32,385	30,901	31,264
29	PP\&E	7,826	10,257	12,569
30	Intangibles, Derivatives and Financial Assets	18,116		
31	Receivables	14,221		
32	Cash	120,788 ${ }^{\prime}$		
33	Total Assets	1,542,336		
34				
35	Debt	794,206		
36	Derivatives \& Profit Participation Rights	43,204		
37	Other Provisions \& Liabilties	9,494		
38	Trade Payables	3,024		
39	Total Liabilities	849,928		
40	Equity	692,408 ${ }^{\prime}$		
41	Total Liabilities \& Equity	1,542,336		
43				
82	PP\&E	2010A	2011E	2012E
83	PP\&E - Beginning Balance	NM	7,826	10,257
84	PP\&E Additions	NM	3,120	3,120
85	D\&A	NM	(689)	(808)
86	PP\&E - Ending Balance	7,826	10,257	12,569
87				
88	PP\&EAdditions	2,219	3,120	3,120
89	CAPEX	16,000	22,500	22,500
90	\% PP\&E Additions of CAPEX	13.9\%	13.9\%	13.9\%
91	Depreciation Period (yrs)	26.2	26.2	26.2
92				
93	D\&A from existing PP\&E	(570)	(570)	(570)
94	D\&A from 2011E PP\&E Additions	NM	(119)	(119)
95	D\&A from 2012E PP\&E Additions	NM	NM	(119)
96	Total D\&A	(570)	(689)	(808)

NON-CASH ASSETS AND LIABILITIES \& OTHER ASSETS AND LIABILITIES

Projecting the Balance Sheet Non-Cash Assets \& Liabilities

Alstria Model B/S - Projecting Non-Cash Assets \& Liabilities

- Certain non-cash assets \& liabilities have little impact on the company's operations and/or are hard to predict. These B/S items are typically held flat. Specifically, for Alstria we hold constant: a)Intangibles, Derivatives and Financial Assets b)Derivatives and Profit Participation Rights

Projecting Non-Cash Assets \& Liabilities

Projecting the Balance Sheet Other Assets and Liabilities

Alstria Model B/S - Projecting Other Assets \& Liabilities

- Receivables, Trade Payables, and Other Provisions \& Liabilities are modeled via relationship to their P\&L drivers:
a) Receivables is typically driven off of the

Days Sales Outstanding (DSO) Ratio $=($ Receivables $/$ Credit Sales) $\times 365$
The average number of days a company takes to collect revenue after a sale. A low DSO number suggests a company is collecting debts quickly and efficiently, a high number suggests a company is taking (too) long to collect on debts. For Alstria, we assume that all revenue (rental income) comes in the form of Credit Sales, i.e. Credit Sales = Total Rental Income
b) Trade Payables and
c) Other Provisions \& Liabilities can be modeled using the Days Payables Outstanding (DPO) Ratio $=($ Payables $/$ Cost of Sales) $\times 365$ The average number of days a company takes to pay its creditors. In the case of Alstria, whose main operations consist of rental-income maximization, the "Cost of Sales" concept is different than that of a typical widget-producer. The analogous expense necessary for provision of Alstria's core services is thus "Operating Expenses"

Projecting the Balance Sheet Other Assets and Liabilities

Alstria Model B/S - Projecting Other Assets and Liabilities

- We set up a model section to project Receivables using the Days Sales Outstanding ratio

Calculating Days Sales Outstanding

C10	$2-6 \quad \pi \mid=\mathrm{C}$	100/(101)*365	
-	A		c
1		(1) Link 2010A Total Rental Income	
2	Alstria Modell income State	in Other Assets and Liabilities	2010,
3	Rentallincome - Organic		89,094
4	Organic rental growth	schedule to Model P\&L:	-13.1\%
6	Totall Rentall lncome	C101 = C6	89,094
7	Operating Expenses	(2) Link 2010A Receivables in Other	(7,250)
25	Normargin	Assets and Liabilities schedule to	91.9\%
26	Alstria Modell Ballance Shee	Model B/S:	20104
27	Investment Property		1,349,000
28	Equity linvestments (JVs)	C100 = C31	32,385
29 30	PP\&E	(3) Calculate 2010A DSO Ratio:	7,826
30 31 31	Intangibles, Derivatives anc Receivables	14,221 / 89,094 x $365=58.3$	$\begin{aligned} & 18,116 \\ & 14,221 . \end{aligned}$
32	Cash	\Leftrightarrow	120,788
33	Totall Assets	C102 $=(\mathrm{C} 100 / \mathrm{C} 101) \times 365$	1,542,336
42	Other Assets and Liab	C102 $=(\mathrm{C} 100 / \mathrm{C} 101) \times 365$	
100	Receivables Totall Rentall income Days Sales Outstanding (DSO)		14,22189,09458.3
101			
102			

Projecting the Balance Sheet Other Assets and Liabilities

Alstria Model B/S - Projecting Other Assets and Liabilities

- Analogous to the Days Sales Outstanding ratio, we calculate the Days Payables Outstanding ratio to project Trade Payables \& Other Provisions and Liabilities

Days Payables Outstanding

Projecting the Balance Sheet Other Assets and Liabilities

Alstria Model B/S - Projecting Receivables

- Holding constant the 2010A DSO Ratio and applying it to 2011E Total Rental Income we project 2011E Receivables

Project Receivables Using DSO Ratio

Projecting the Balance Sheet Other Assets and Liabilities

Alstria Model B/S - Projecting Trade Payables and Other Provisions \& Liabilities

- Analogously, we replicate projections for 2011E Trade Payables and 2011E Other Provisions \& Liabilities

Project Receivables Using DSO Ratio

0104	4	=(D105*D10			
${ }^{11}$ Alstria Model Income st		(1) Link 2011E Total Operating		20111	
					${ }^{24,733}$
		Expenses to Model P\&L:	-13.18		
		D105 = - D7	89,094 $(7,250)$ 18.	(17,87	(7,541)
		109 - - D	¢	${ }_{\substack{85,55 \\ 92.18}}$	91,483
25	Alstria Model Balance st	(2) Link 2011E DPO Ratio to 2010A:D106 = C106	2010	2011	
363636	Debt ${ }^{\text {Derivatives } \& \text { Profit Part }}$		-94,20		
		$\begin{aligned} & \text { D106 }=\text { C106 } \\ & \text { D110 }=\text { C110 } \end{aligned}$	9,4		
$\begin{aligned} & 37 \\ & 38 \end{aligned}$	lol	(3) Calculate 2011E Trade Payables:	849,0		
39 40 41			692.4		
99	Other Assets and Liabilit	$\text { D104 = (D105 x D106) / } 365$	2010	2011 E	
101	\qquad Receivables Total Rental Income	$\text { D104 = (D105 x D106) / } 365$	14,2		15,76
		(4) Calculate 2011E Other	39,0		
$\begin{aligned} & 102 \\ & 103 \end{aligned}$	Total Says Sales Outstanding				
$\begin{aligned} & 104 \\ & 105 \end{aligned}$	Trade Payables Operating Expenses	$(7,326 \times 478.0) / 365=9,593$			
106		$\text { D108 = (D109 x D110) / } 365$			
	erating Expenses				

Projecting the Balance Sheet Other Assets and Liabilities

Alstria Model B/S - Projecting Trade Payables and Other Provisions \& Liabilities

- We can then link 2011E Trade Payables, 2011E Other Provisions \& Liabilities and 2011E Receivables back up to the B/S

Linking Other Assets and Liabilities to Model B/S

Projecting the Balance Sheet Other Assets and Liabilities

Alstria Model B/S - Projecting Other Assets \& Liabilities

- With Trade Payables, Other Provisions \& Liabilities and Receivables modeled, our B/S is complete except for: Cash, Debt, and Equity. These will be modeled in the next section

Model B/S without Cash, Debt, and Equity

Projecting the Balance Sheet Complete Model B/S as Described in Part III

Open BS Projections file to complete cells highlighted in red

Alstria Model Balance Sheet	2010 A	2011 E
Investment Property	$1,349,000$	
Equity Investments (JVs)	32,385	
PP\&E	7,826	
Intangibles, Derivatives and Financial Assets	18,116	
Receivables	14,221	

Cash
Total Assets
120,788
1,542,336

Debt
794,206
Derivatives \& Profit Participation Rights
43,204
Other Provisions \& Liabilties 9,494
Trade Payables
Total Liabilities
3,024

Equity
849,928

Total Liabilities \& Equity
692,408
** Unhide "BS - Complete" to compare your results by pressing: ALT + H + O + U + H + Enter

